
J .  Fluid Mech. (1965), vol. 21, part 4, p p .  641-657 

Printed in Great Britain 
64 1 

The Mach wave field radiated by supersonic 
turbulent shear flows 

By J. E. FFOWCS WILLIAMS AND G. MAIDANIK 
Bolt, Beranek and Newman Inc., Cambridge, Massachusetts 

(Received 10 July 1964) 

Theoretical studies of aerodynamic noise suggest that the sound field of 
supersonic flows will be dominated by eddy Mach waves. Recent experimental 
evidence supports this view. In  supersonic turbulent boundary layers, and 
rocket exhaust flows, turbulence occurs in regions of high mean velocity gradient. 
At low speed, such gradients are known to amplify the sound emitted by turbu- 
lence. This paper deals with the corresponding Mach wave problem. The exact 
equations of sound radiation by turbulence are rearranged in a form where the 
equivalent sources, derivatives of the turbulence stress tensor, are shorn to be 
dominated by one term. That term is formed from the product of the mean 
velocity gradient and the rate of change of density. It seems that its resemblance 
to the dominant source of sound in low speed shear flows is largely fortuitous. 
In  the Mach wave case, the theory is designed to include effects of both tempera- 
ture gradients and density perturbations, and the approximations of the 
estimate are of a type that would not be expected to be valid away from the 
Mach wave condition. The basic theory is used to make an estimate of the sound 
radiated from supersonic boundary layers, and an approximate equation relating 
the radiated pressure to the surface pressure is derived. Experimental evidence 
is then examined to show that the equation is in excellent agreement with 
observation. The theory is then applied to annular shear flows of the rocket 
exhaust type. Again an approximate equation relating near and far field 
pressures is established, and the paper concludes with suggestions for experiments 
that could check the result. 

1. Introduction 
Turbulent airflow is known to radiate sound with increasing efficiency at high 

speeds. That increase is due to three effects. At low speeds, the most important 
of these are the rise in turbulence levels and frequencies with increasing flow 
velocity. But the other effect, though small at low speeds, is one that completely 
changes the character of radiation from supersonic flow, and is due to the con- 
vective motion of the coherent regions of turbulence that we call eddies. It is 
only to be expected that eddies moving supersonically should create rudi- 
mentary shock waves. Such waves are highly directional, having their fronts 
aligned to the flow at, or near, the Mach angle, a property that led Phillips (1960), 
who was the first to emphasize that feature, to term them Mach waves. It is now 
well known that Mach waves dominate the radiation field or supersonic turbulent 
flow (Laufer 1961), so that their study is relevant to most problems of sound 
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generation by turbulence at high speed. Their study in flows of the type that 
occur in rocket exhausts is particularly relevant, for it may help to throw 
important new light on the still open question regarding the location of the main 
noise-producing regions of those flows. 

Lighthill’s (1952, 1954) theory of aerodynamic noise provides a basis for the 
study of sound induced aerodynamically. There the radiation field is defined 
explicitly provided that a turbulence stress tensor is known throughout the flow. 
If velocities are low enough for temperature and density changes within the 
turbulence to be negligible, the stress tensor approximates to the fluctuating 
Reynolds stress in an incompressible fluid. Incompressible flow arguments can 
then serve to estimate the strength of the equivalent aerodynamic quadrupoles 
which are the source terms of Lighthill’s equations. Proudman (1952) was able 
to exploit this technique in his theory of sound radiated by isotropic turbulence. 
A t  high speeds the situation is more complicated. Although Lighthill’s theory is 
exact and has been shown to form a consistent analytical basis for the study of 
sound generated by turbulent flow, up to high supersonic speeds (Ffowcs 
Williams 1963) it pre-supposes a knowledge of the stress tensor, which is itself 
subject to compressibility effects. In  fact a proper treatment of any aspect of 
the sound-flow interaction problem, which inevitably assumes a crucial role at 
high Mach number, requires an admission that the stress tensor includes terms 
directly attributable to the sound field. The stress tensor cannot then be esti- 
mated until the radiation problem is solved and Lighthill’s solution appears as 
a highly intractable integral equation. Furthermore, at high Mach numbers the 
temperature is likely to be subject to kinetic heating effects and can no longer 
be regarded as constant; an essential assumption in approximating the stress 
tensor by the Reynolds stress. 

True though these arguments are, they present an unduly depressing outlook 
on the prospects of the theory at high Mach numbers. This is particularly the 
case if we accept that the main purpose of theory must be to estimate the radia- 
tion field induced by some known property of the turbulent flow. That known 
property may be deduced from analytical studies, measured by direct experi- 
ment or, as is more likely to be the case, estimated very crudely by dimensional 
and similarity arguments. It is inevitable that different theoretical approaches 
will be required to yield solutions based on different descriptions of the turbulent 
flow, and that many problems will defy realistic solutions. However, there 
remain instances when model flows can be constructed that are both realistic 
and tractable, and the case of Mach wave generation by highly sheared supersonic 
flow seems to be one of these. But even then, much depends on what particular 
aspect of the turbulent flow one assumes to be known. 

Phillips (1960) was the first to make a thorough attack on the supersonic shear 
flow problem. His theory was designed to yield a description of the Mach wave 
field based on a known distribution of turbulent velocities. This aim necessitated 
a major reworking of the basic theory which Phillips achieved through an elegant 
manipulation of the equations governing the motion of an ideal gas. He thus 
derived a convected wave equation forced by a term that could be described 
closely in terms of the known velocity field. The solution of that equation 
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presents a formidable challenge, and the Phillips (1960) technique was to seek 
an asymptotic expansion a t  high Mach numbers, for a model shear flow. More 
general solutions have yet to be worked out, but his approach forms the basis 
for estimating the radiation field once the turbulent velocities are known. 

However, if, in place of the velocity field, the turbulence were described by 
some product of density and velocity, such as may be obtained by hot-wire 
studies in the turbulent flow, the Mach wave field would have t b  be tackled by 
a different approach. Perhaps Lighthill’s stress tensor could then be estimated 
more readily than could the velocity field, so that his equations would form a 
more direct procedure for solving the radiation problem. This point will not be 
emphasized further. It is introduced merely as a reminder that both the Phillips 
and Lighthill starting equations are exact and either could form a sound basis 
for estimating the radiation field, provided the respective forcing fields were 
adequately described. Different models of the flow may clearly favour different 
approaches so that the two theories should be regarded as complimentary. 

In  this paper we develop a technique for estimating the Mach wave radiation 
from a supersonic turbulent shear flow based on a description of the pressure or 
density fluctuations within that flow. It is well known that the perturbation 
pressure field is relatively extensive in comparison to the turbulent velocity 
scales so that one may be able to estimate the order of magnitude of that pressure 
from a straightforward experimental survey in the near vicinity of the flow. 
The aim of our theory is then to relate the Mach wave field to a turbulent property 
that might be estimated, however crudely, by direct experiment. It transpires 
that for the particular case of Mach wave emission in a highly sheared flow, the 
source term of an exact equation based on a development of Lighthill’s theory, is 
approximated to high accuracy, by a comparatively simple expression involving 
pressure as the only unsteady parameter. In  that development, account is taken 
of both density and temperature changes so that the theory makes some attempt 
at overcoming the pitfalls of the usual approximations that feature in aero- 
dynamic noise computations. 

The theory is applied to the radiation field of turbulent boundary layers, where 
an estimate of Mach wave strength is based on measurements of the surface 
pressure. The agreement between the theoretical computation and experi- 
mentally measured values is remarkably good, both as regards the Mach number 
dependence and the order of magnitude. The paper concludes with an application 
of the same technique to a model flow of the rocket exhaust type. The Mach 
wave field is estimated in terms of the local pressure levels, and experiments that 
could throw light on the relevance of the theory to practical rocket noise problems 
are suggested. 

2. Mach wave sources in supersonic turbulent shear layers 
Within the framework of Lighthill’s (1952) acoustic analogy, turbdent flow 

radiates sound to distant points in quiescent air in an equivalent way to that 
radiated by quadrupoles in a homogeneous medium at rest. The quadrupole 
strength is equal to a turbulence stress tensor which is generally assumed known. 
Convective motion has a pronounced effect on the radiation efficiency of quadru- 
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pole sources, for they radiate more effectively at high frequencies. The Doppler 
effect increases frequency in the direction of motion, an increase that accounts 
for the major convective amplification of the radiated sound. But whenever 
sources approach an observer with precisely the speed of sound, the Doppler 
factor becomes singular and the radiation problem undergoes a drastic change of 
character, the rather inefficient quadrupole radiation giving way to a highly 
directional intense wave system known as Mach waves (Phillips 1960). It is with 
the Mach waves generated by high-speed shear flows that we are currently 
concerned, a problem pertinent to the study of both rocket noise and the sound 
of high-speed turbulent boundary layers. 

Aerodynamically, the Mach wave concept is perfectly clear, being a form of 
ballistic shock wave attached to coherent regions of turbulence, or eddies, con- 
vected supersonically. But it is within the aerodynamic noise theory that their 
study is tractable, and there they require a different but equally revealing 
interpretation. A convected eddy is acoustically equivalent to a moving quadru- 
pole, essentially of low radiation efficiency, composed, as it is, of four mutually 
opposed simple sources. No radiation would result if these sources were heard 
simultaneously. However, retarded time effects destroy the coherence, so that 
cancellation is rarely complete. When a quadrupole moves towards an observer, 
the nearer elements emit from a relatively closer position, for they have moved 
forward in the retarded time interval separating emission from the near and far 
regions. The quadrupole then appears to occupy a larger volume, and the 
retarded time interval is increased, bringing about a reduced cancellation which 
results in increased emission. 

Obviously, this increase cannot be maintained indefinitely, for a quadrupole 
could at no time radiate more effectively than its constituent elementary sources 
(Lighthill 1962), a condition corresponding to a complete absence of cancellation. 
Such is the case when a quadrupole approaches an observer at the speed of sound. 
Then the waves emitted by the more distant elements never overtake the nearer 
portions, and each element is heard independently. This is the Mach wave 
phenomenon where the quadrupoles degenerate into their constituent elementary 
sources (Ffowcs Williams 1963). An eddy in supersonic motion is thus acoustic- 
ally equivalent to a quadrupole, whose radiation is enhanced in accordance with 
the Stokes and Doppler effects, except in the one direction where it travels at  the 
speed of sound. That is the direction in which Mach waves propagate, and their 
strength exceeds those of other waves by the ratio of simple source to quadrupole 
efficiency, generally a very large factor. This physical introduction helps to make 
clear the sometimes subtle analytical manipulations of aerodynamic noise theory, 
to which we will now turn, to consider more specifically the Mach waves generated 
by supersonic shear flows. 

The acoustic analogy starts with a rearrangement of the exact equations of 
fluid motion as an inhomogeneous wave equation for density p ,  

where qj is Lighthill’s turbulence stress tensor, puiuj - t - ~ , ~  - aipSij, U, being the 
velocity in the i direction, a, the speed of sound in the uniform medium sur- 
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rounding the turbulent flow, S,, the Kronecker delta and pij  a tensor incor- 
porating both pressure and viscous terms. Repeated tensor suffices are to be 
summed over 1 , 2  and 3. 

In  the absence of solid surfaces equation (2.1) can be rewritten to yield a 
solution for p once the turbulence stress tensor is known, 

This integral should be evaluated over all space, but it is only from the turbu- 
lent region that it receives significant contributions. In  reality, equation (2.2) is 
a rather complicated and intractable integral equation for density, T,, itself being 
a function of density. But we shall not dwell on that point. Rather, we argue 
below that !& can be approximated, to high accuracy, by a relatively simple 
term, in this instance of high shear flow turbulence. Equation (2.2) can then 
remain, as it has always been regarded a t  low Mach numbers, an expression that 
the sound is generated by a distributed system of aerodynamic sources of 
known strength. 

The double divergence of the stress tensor is the simple source strength 
density, which integrates instantaneously to zero. This point is a more precise 
expression of our foregoing discussion, that simple sources are arranged in 
opposing sets that constitute quadrupoles. The mutual cancellation makes diffi- 
cult an assessment of the radiated sound based on equation (2.2), and Lighthill 
showed how the quadrupole character could be brought to light by applying the 
divergence theorem twice and disregarding surface integrals. His equation can 
be expressed in its far field form as 

This equation appears more straightforward when rewritten in a terminology 
first introduced by Proudman (1952) where the tensor suffices, i and j, are 
replaced by r,  a notation implying the direction of emission and requiring no 
summation of repeated suffices 

The convective effects can now be given a more rigorous basis. Whenever 
eddies move downstream, part of the time derivative aTwlat is generated by 
the convection of a spatial gradient, al l , /ay .  If the convective speed is aoM,  
all,,/at is approximately equal to a, M(aT,/ay). Such a space derivative integrates 
instantaneously to zero, and thus represents a source of basically higher order 
and of fundamentally lower efficiency. Lighthill (1952) chose a system of axes 
attached to the eddies, 7 = y - a. Mt, to illustrate this effect and his result is the 
basis of aerodynamic noise theory at significant Mach number 



646 J .  E.  Pfowcs Williams and G. Muidanik 

The apparent singularity at M cos 8 = 1 (8 being the radiation angle measured 
from the direction of convective motion) heralds the powerful and highly direc- 
tional Mach wave radiation. Then, in accordance with our physical arguments 
(as well as more general theoretical concepts, Ffowcs Williams 1963) the simple 
source strength is the relevant measure of radiation efficiency, and we must 
revert to equations (2.2) or (2.4), discarded above as not revealing of the more 
classical radiation of convected quadrupoles. However, they are both precise, 
and i t  is on them that we base our analysis. Our starting equation will be an 
intermediate stage, where only one of the divergences of equation (2.2) has been 
replaced by a time derivative. That is chosen for analytical convenience that 
will become apparent in our manipulation of the source term 

l/ao(a2T,,/at ay,) is now a measure of the equivalent aerodynamic source strength 
and assumes a particularly simple form for Mach waves generated by a highly 
sheared flow. That form we now derive by employing the equations of motion to 
emphasize that part of the source term directly amplified by a mean velocity 
gradient 

The momentum equation allows this to be rewritten 

A comparison of equations (2.2) and (2.4) will reveal an integral equivalence 
of derivatives with respect to time and a divergence of a vector field. We now 
make use of this equivalence in noting that a source of strength a(pui)/ay, is 
precisely equivalent toa source of strength - a;l a(pur)/at; i.e. they both generate 
identical sound fields far away from the source region. Furthermore, gradients 
in directions normal to the radiation direction integrate directly to zero, the 
integral being an instantaneous one involving no retarded time change, so that 
a(pu,)/ay, is precisely equivalent to a(pu,)/ay, in generating sound. This, in turn, 
is equivalent to -a;l a(pu?)/at so that the source term of equation (2.9) can be 
written in its fully equivalent form 

(2.10) 

The symbol I = implies that the two sides of the equation integrate at retarded 
time to yield identical distant sound fields, which is our current concern, but 
does not imply a direct equality of functions. The right-hand side of equation 
(2.10) can thus be regarded as the source term and may be expanded to the form 

(2.11) 
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We seek the particular term subject to amplification by a mean velocity 
gradient, so we consider the mean value of u,, Ti,, separately from its time- 
dependent fluctuation, ui. At this stage the equations remain exact, so that the 
Mach wave source strength is given precisely by 

(2.12) 

Now we suppose the mean velocity gradients to be sufficiently high that the 
second term on the right-hand side of this equation, the only one directly ampli- 
fied by such a gradient, dominates the source system, so that the remaining 
terms are negligible. This supposition would appear highly relevant to the 
practical situation, since both the remaining terms are likely to be of little 
importance. The &st is small since the centre of an eddy will move at a speed 
close to the mean flow velocity, so that U,. is approximately the component of 
convection speed in the direction of emission, by definition equal to a. for the 
Mach wave problem. In a high-velocity gradient the mean velocity changes 
rapidly, but if density remains correlated in a symmetrical way, the term will 
tend to be antisymmetric about the eddy centre and will therefore tend to 
vanish on integration. The remaining term involves the density and perturbation 
velocity only, and must, if the turbulence level remains relatively low, be small 
compared to the second term, particularly if the mean flow gradients greatly 
exceed the fluctuating velocity gradients, which we assumed to be the case. 

We express the mean velocity gradient, aZ,/ay,, in its tensor form 

and assume a local isentropic condition, so that +/at is replaced by &yap/a t ) ,  
in writing our basic equation describing Mach waves radiated by a highly 
supersonic shear flow 

Though this equation is of the form suggested by Lighthill (1954) to be relevant 
to sound production by low-speed shear layers, the agreement seems largely 
fortuitous. Close examination reveals that the radiation is precisely opposite in 
sign, and that the equations differ by a factor 2(a2/a3. But a substantial differ- 
ence would be expected, for the low-speed result, based on the neglect of octupole 
terms, must vary considerably from the Mach wave case where each multipole 
assumes a simple source efficiency. The remarkable aspect is rather that the low- 
speed result is at all similar in form, so the similarity will not be considered 
further. 

Equation (2.13) is the main result of this paper and will form the basis of our 
estimate of the sound radiated by supersonic shear layers. That estimate is 
based on idealized models of the turbulent flow, but models that have some 
experimental foundation, at least at low speeds. 
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3. Mach wave radiation from supersonic boundary layers 
The Mach waves radiated by supersonic turbulent boundary layers provide 

an instance where the foregoing theory should be of direct bearing. Their experi- 
mental investigation, recently reported by Laufer (1961), provides a basis for 
a critical assessment of our theoretical model, by comparison of predicted and 
measured features of the radiation field. This is what we now set out to do. We 
regard the boundary layer to have uniform properties over an infinite plane 
surface. This step allows us to disregard any influence of the boundary in our 
computation of the sound field. In  fact, we assume viscous effects to be negligible 
(except, of course, that they play their full role in maintaining the turbulent 
state), so that Powell's (1960) argument, that a plane boundary merely reflects 
the aerodynamically generated sound, is relevant. We restrict our attention 
entirely to Mach waves, and specifically to the shear amplified waves with their 
characteristic directionality. This step, quite apart from directing our attention 
to those waves of greatest significance, avoids any trouble with singularities in 
the nature of Olbers' paradox usually present whenever sources are distributed 
over an infinite area. 

We choose our co-ordinate system such that the mean flow is in the 1-direction. 
The 2-direction is that normal to the boundary surface, so that the only mean 
shear is aiiJay,. We assume adiabatic conditions in the radiation field and 
rewrite the mean square pressure, g ( x ) ,  as equal to ab(p -po)2 (x). This pressure 
is given by the mean square value of equation (2.13). We write that equation for 
the particular case of small eddies centred at  y, and assume that both the velocity 
gradient aii,/ay, and the local speed of sound a remain constant over a distance 
of the order of an eddy length. Consequently, they may be regarded as functions 
only of the eddy location. 

____ 

lx -Y - A \  x (Y ' t - y) p (y + A, t - a0 -) dhdy. (3.1) 

It was shown by Ffowcs Williams (1963) that the integration over the correla- 
tion volume should be replaced by an integration over the correlation area normal 
to the radiation direction in association with an integration over the moving axis 
time scale, whenever Mach waves are under study. We carry out this step. We 
replace the integral of the correlation function by the mean square value of the 
pressure time derivative, (ap/at)2 (y2), multiplied by the correlation volume, in 
this case equal to aor*Az, a07* being the distance travelled by an eddy in the 
direction of emission during its lifetime T * ,  and A: being the correlation area in 
the Mach wave plane 
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The equation for the radiated pressure field then becomes 

The condition for Mach wave generation imposes a geometrical constraint that 
requires attention be concentrated on a particular region a t  any one speed. 
Mach waves radiate in directions close to the Mach angle, an angle that varies 
from directly downstream to the normal direction as Mach number rises from 
one to infinity. At any position, height h above the boundary layer (assumed to 
be much thinner than h),  Mach waves generated by eddies moving at  near sonic 
speed will come from far upstream, for they travel in a near tangential direction 
to the boundary. On the other hand eddies moving at high supersonic speed will 
radiate to the point from a much closer position, so that those waves arrive with 
greater relative strength. Before we can integrate over any surface parallel to 
the plane boundary, and so sum the contribution made by sources in that surface, 
we must fist determine how effectively the eddies radiate to angles slightly 
removed from the Mach angle. This we can do by reference to a particular 
example worked by Ffowcs Williams (1963) together with a more general 
dimensional argument (Ffowcs Williams 1962) that shows the radiation from 
convected turbulence to be proportional to the factor 

(3.4) 

where E is a coefficient that relates the typical frequency in a frame of reference 
convected with the turbulence to that in a fixed reference system. It is of the 
order of the normalized mean square turbulence level, typically near 0.2 in 
subsonic jet mixing flows, a value we assume pertinent to the supersonic boundary 
layer. At the Mach angle the coefficient P(M, 8) is seen to be unity, while it is 
a function of Mach number away from that region. This point reflects the fact 
that the simple-source-like Mach wave radiation occurs near the Mach angle and 
that radiation to other directions is quadrupole in nature and less efficient by 
a factor dependent on the convective speed. Our estimate of the Mach wave 
strength, together with this directional term, can thus be used to compute the 
total radiation, by simply weighting the integrand of equation (3.3) with the 
directional function F(M, 0) 

As before, M is the eddy convection speed normalized with respect to the sonic 
speed in the uniform flow, a,, and cos 8 is the ratio, (xl - yl)/lx - y I .  

The integral over planes parallel to the surface is not straightforward but can 
be evaluated by making use of a Taylor expansion about the point, M cos 0 = 1, 
of the terms that weight the function P ( N ,  8). The series is rapidly convergent 
a t  the higher Mach numbers, the second term being smaller than the leading 
term by a factor $s4M8(M2- l)-4.  However, the error increases rapidly near 
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sonic convection speeds where this result takes no account of the fact that the 
highly directional Mach wave radiation gives way to the more nearly omni- 
directional low speed result, the nature of our approximation being such as to 
neglect the sound radiation by subsonic flows. But that need cause no great 
concern since the error is small, being less than approximately 10 % a t  a Mach 
number of (1 -€)-I, equal to 1.25 when 8 is 0-2, and decreasing rapidly a t  higher 
speeds. The leading term of the high Mach number expansion approdches zero 
a t  sonic speeds, and in selecting it we neglect the sound generated by eddies 
convected at Mach numbers essentially lower than (1 - e)-l, an approximation 
that is entirely compatible with our discussion of the Mach wave radiation. 
That leading term is 

This value, when inserted into equation (3.5) effects a considerable simplifica- 
tion of the radiation equation 

This result is independent of the observation height above the plane, in 
accordance with the experimental results of Laufer (1962) and the concept of 
energy conservation in the radiation field. 

We assume now that each eddy moves downstream with a convection speed 
equal to the mean flow velocity at its centre, U,(y,) .  The mean velocity gradient 
can then be used to transform the integration over the boundary-layer thickness, 
to an integration over convection Mach number, M = U,/a,. Since we restrict 
our attention to Mach waves, which can only be generated by eddies moving 
supersonically with respect to the uniform flow, the integration range is from 
M = 1, to M = M,, M, being the mean flow Mach number which is the speed 
at which the eddies at the boundary surface move relative to the free flow 

f 3 dy2 -+ a, f lNmdM. 
aY2 

The correlation scales must now be estimated. We assume that the moving axis 
time scale, or eddy lifetime, T*, is inversely proportional to the local mean 
velocity gradient. Davies, Fisher & Barratt (1963) found this to be the case for 
the turbulence in a jet mixing region at subsonic speeds. We shall assume, for 
lack of a better guide, that this property holds over into the supersonic regime 
and regard the product (aGl/8y2) 7*, as a constant close to five, the value observed 
in subsonic jet flows. 

It is of interest to study the effect of one other assumption based on flow 
observations at low speed (Favre, Gaviglio & Dumas 1958). That is that the 
eddies are elongated in the downstream direction and that their scale increases 
in direct proportion to the boundary-layer displacement thickness 8,. The area 
A: is an oblique cross-section of an eddy, so that it increases with increasing 
speed, being equal to 8,2/cos8, or 8;M at the Mach wave condition. 
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Equation (3.7) can then be written in the more tractable form 

where n is either 3 or 2 depending on whether or not a correction is made for 
eddy elongation effects. 

The mean square value of the pressure time derivative can be estimated to be 
of the order of the mean square pressure 9 times the square of a characteristic 
frequency. We shall assume that the order of magnitude of the mean square pres- 
sure is that measured by Kistler & Chen (1963) on the boundary surface, in 

L O  I I 

1 2 3 3 5 
Free stream Mach number, M ,  

FIGURE 1. A comparison of the Mach wave strength predicted by the present theory with 
Laufer's experimental results (no eddy elongation). m, Radiated pressure* (single 
wall configuration) ; 0 @'/rw radiated pressure (four-wall configuration) (Laufer 
1964); Mach wave strength predicted by present theory; 0 @k/rw wall pressure 
(Kistler & Chen 1963). 

the same apparatus as that used by Laufer (1962)) whose results will be compared 
with those of this computation. Kistler & Chen found the spectrum to have its 
maximum at a Strouhal number near 0.3, so that we estimate ( a ~ / i ? t ) ~  to be of 

- 

the order 
(3.10) 

where 2w is the mean square pressure at the surface. This estimate is based on 
the Kistler & Chen velocity measurements near the centre of the boundary layer. 
We have adapted their result to a reference system moving with the mean flow. 
The transformation rests on the hypothesis that turbulence scales remain con- 
stant across the layer and that frequencies vary according to Taylor's hypo- 
thesis of rigid convection. 

The local speed of sound will be augmented due to the temperature build up 
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caused by bringing the flow to rest near the boundary. We assume this process 
to be adiabatic, so that 

az/ai = 1 + 8(r - 1) M 2  = 1 + 0.2M2. (3.11) 

Our final equation for the radiated sound pressure can then be written down. 
We normalize the values by the wall shear stress rW since that is the parameter 
used in presenting the experimental data on which we base our computation 

(3.12) 

where 9‘ and Ph are respectively the root-mean-square Mach wave strength and 
the wall pressure level. m has the value 1 if we neglect the possibility of the eddy 
being elongated but zero if that effect is taken into account. 

Free stream Mach number, M ,  

FIGURE 2. A comparison of the Mach wave strength predicted by the present theory with 
Laufer’s experimental results (with eddy elongation). W, Radiated pressure* (single 
wall configuration) ; 0 ,  j5‘/rW radiated pressure (four-wall configuration) (Laufer 
1964); @, Mach wave strength predicted by present theory; O,j5L/r, wall pressure 
(Kistler & Chen 1963). 

Laufer (1964) reports values of both @’/rW and f$,,/rW, the latter obtained in the 
same experimental apparatus by Kistler & Chen (1963), and those values are 
reproduced here in figures 1 and 2. Superimposed on those figures are the results 
of this analysis, based on Kistler & Chen’s (1963) surface pressure measurements. 
In  figure 1, we neglect the effects of eddy distortion and account for them in 
figure 2. Although these values are factored for the best correspondence with 
Laufer’s measurements, that factor is so close to unity that it represents a 
startling agreement between the theoretical and experimental values. In  fact, 
the factor is 2.3 in figure 1 and 1.5 in figure 2. The theoretical points displayed 
are computed from equation (3.12) with E taken as 0.2 and the right-hand side 
multiplied by these values. 
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4. Mach wave radiation from cylindrical shear layers 
The apparent agreement between our theoretical estimate and Laufer's 

measurements in the turbulent boundary layer, leads us to speculate on the 
nature of the Mach wave field in situations more closely resembling a rocket 
exhaust flow. Those Mach waves still await a detailed study so that, in this case, 
our computation must be regarded as a prediction that might'be checked by 
future experiment. 

Again we choose an idealized flow of simple geometry. We assume the turbulent 
shear layer to surround a cylindrical region of supersonic laminar flow. The mean 
flow is again alined in the 1-direction and 2 denotes the radial direction. Only 
the simplest of cases is considered, where the observer is far enough away from 
the flow for both the jet diameter D and the finite length of uniform supersonic 
flow AL to be small compared with Ix - yI . In addition, the shear layer thickness 
is assumed small in comparison with the jet diameter. 

This example falls a long way short of representing real exhaust flows, but may 
provide a basis for computing more realistic examples by summing over all 
lengths AL. That is not attempted here since the estimate is based on the 
assumption that one knows the distribution of near field pressure very close to 
the flow as well as the axial velocity variation. Neither of these are known a t  
the present time. 

An isolated length of uniform supersonic flow may be established by shielding 
all but a small region of a rocket exhaust from its environment. An experiment 
can then be foreseen where our prediction can be checked and extensions to more 
realistic situations could follow should such checks prove encouraging. 

Our estimate is based, as was the previous example, on equation (3.3). The 
integration around a line of constant mean velocity is straightforward, as is that 
in the downstream direction where the integrand is constant over the small 
length AL. Again we introduce the directionality of the radiation field through 
the function F ( M ,  0). 

__ 

ya)a07*h,*dy2. (4.1) 

We estimate the typical pressure level based on that present in the near vicinity 
of the flow z, and follow identical procedures to those adopted in the foregoing 
section, for interchanging variables and assessing the integral scales T* and A,*. 
Only one point is materially different, and that concerns the distribution of 
temperature likely to be met in the shear layer of a rocket exhaust. The increase 
in temperature due to flow retardation is likely to be a small effect in comparison 
with the temperature gradient induced by mixing of the hot exhaust gases with 
the quiescent air. We shall suppose this to be the case and conjecture that the 
mean temperature is proportional to the mean velocity aoM. That variation 
will bring out a t  least the major effects that can be extrapolated from experi- 
ments in hot jet flows (Pai 1954) albeit at considerably lower exhaust speeds, 
where the temperature and velocity profiles bear a pronounced similarity. 
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Accordingly we write a2 as a fraction of a;, and carry out the steps that reduce 
equation (4.1) to the analogue of equation (3.9) 

a2 z= 
(4.3) I + -  --1 M 9 d M ,  cos2 8 sin2 8 

{ M [" IX-YI2 Ma To 

where aoMw and T, are the nozzle exit velocity and temperature, and To is the 
temperature of the quiescent air into which the jet exhausts. In  current rocket 
systems, the ratio M,I(T,/T0- 1) is close to unity, so that it may be discarded 
in equation (4.3) 

FIGURE 3. Computed values of the directionality function I ( M m ,  O ) ,  equations (4.4) and 
(4.5), for Mach waves radiated from cylindrical shear flows. q M ,  is the velocity of the 
laminar flow at the jet centre. 

Our final expression then becomes a ratio of radiation pressure to near field 
pressure 

- 

(1-Mcos8)2+8M2 
5Pt p2(x) = - cos2 8 sin2 8 

- 

64n 
(4.4) 

This result is simplified by the introduction of a proportionality function 
l ( M w ,  8) defined such that 

I(Ma,  8) now accounts for all the directional properties of the radiated sound 
and it is interesting to compare its form with the known directionality of quadru- 
poles convected uniformly at a single speed. To do this we have computed its 
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value with e = 6 for several different Mach numbers and angles of emission. The 
results are shown graphically in figure 3 and present an interesting comparison 
with the single-speed cases treated by Ffowcs Williams (1963). The main 
difference, as one might expect, is that the extreme directionality of that 
example has given way to a more omnidirectional distribution, but greatly 
affected by the sin28cos28 term that arose from the directionality of the 
important Mach wave source. Nevertheless, there is a tendency for the radiation 
to concentrate near the Mach angle associated with the highest velocity M,.  In  
rocket systems, the maximum velocity would vary with downstream position 
so that the radiation might be described by a suitable superposition of these 
results, but weighted according to the value of 

It is doubtful that these results apply, in an unmodified form, to actual rocket 
systems. An agreement would inevitably rely on the formation of a long, slowly 
expanding shock-free flow, for that is the hypothetical flow system for which the 
theory is intended. However, one is encouraged in advocating experiments, 
by the fact that the results of the two-dimensional example agree so well in 
the boundary-layer case. It may well be that an experimental study of the 
Mach wave field of a high velocity jet, exhausting from a properly designed 
nozzle, will yield the data with which these theoretical predictions can be 
compared. Such data is anxiously awaited. 

5. Conclusion 
In  summarizing this theoretical study, in which many of the steps are of a 

conjectural nature, it  is pertinent to ask, to what degree did our assumptions 
regarding the turbulent structure render fortuitous the excellent agreement 
between theory and experiment? To clarify this point we list the major assump- 
tions involved, and comment on the way the results might be affected by changes 
in our model of the flow. 

The assumptions start with the selection of the only terms directly amplified 
by a mean velocity gradient, as the dominant Mach wave source (see equation 
(2.12)).  This step is central to the theory and should be regarded more as a 
description of the class of problems for which the theory is intended, rather than 
as a compromise introduced for ease of solution, but of course it is that too. The 
more speculative assumptions concern our model of the turbulent structure. 
That turbulent pressure scales are directly proportional to, and of the same order 
of magnitude as, the shear layer thickness seems utterly reasonable, as does 
the conjecture that the pressure levels vary little within that scale. But to relate 
the eddy lifetime to the inverse of local shear is a step justified only by a distant 
analogy with known properties of subsonic jet mixing regions. The elongated 
nature of the eddies is likewise a tentative extrapolation of known features of 
subsonic flows. But both these steps would seem to affect only details of the 
result, for their influence appears negligible in comparison to that of tem- 
perature changes, accounting for a factor proportional to the fourth power of 
Mach number a t  high speeds (i.e. the factor (1 + 0.2M2)-2 in equation (3.12)). 
Yet a complete neglect of the temperature term would alter the results shown in 
figure 1 by a factor less than 2.5 at M, = 5, a point that leads us to suggest that 

at each station. 
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the estimation technique we advocate is relatively insensitive to  details of the 
flow. That feature gives us confidence that the discrepancies between our model 
and real flows will not materially affect the result. However, it  would be wrong 
to underestimate the measure of coincidence that contributed to the agreement 
of our calculations with Laufer’s results. The computation technique is coarse 
and based on a model flow of questionable detailed significance, so that our 
agreement with experiment closer than a factor of three comes as a considerable 
surprise. To what degree it is fortuitous will be answered far more effectively by 
the results of experiments in high speed jet flows, for there we have predicted 
the Mach wave fields in the absence of experimental data. More strictly, we have 
predicted the radiation field of a model flow designed to simulate part of the 
supersonic region of a rocket exhaust stream. It may be feasible to isolate that 
supersonic part, on a model scale, by exposing to the atmosphere only the initial 
length of mixing flow, and thereby creating an experiment where our predictions 
could be critically tested. 

One final point concerns the asymptotic behaviour of the radiation field a t  
high Mach number. Our equations predict that the radiated pressure increases 
in direct proportion to that of the near field. This point, though compatible with 
the idea that Mach waves have no conventional near field (so that their strength 
near the source is a direct measure of their radiated energy), throws no new light 
on the asymptotic velocity dependence at high speed. It merely transfers the 
emphasis to the near field pressure. The more general dimensional arguments, 
that have previously been applied to sound generation at supersonic speeds, 
indicate that the radiated energy should increase in direct proportion to the 
mechanical energy of the flow. Those arguments could be brought up again, so 
that in conjunction with the present result, they would predict the mean square 
pressure, in both the near and far fields of supersonic shear flows, to have a 
velocity cubed dependence. This result, essentially restricted to geometrically 
similar flows, is another point that could be checked very easily, but has yet to 
be studied experimentally. Such experiments are urgently needed for they seem 
the only way of verifying the theoretically inspired ideas that Mach waves form 
a significant part of the noise field of modern rockets. 

This work was sponsored by the Langley Research Center under Contract 
No. NAS1-3217, S/M Study of Rocket Noise. 
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